Social Market Analytics Identifies Most Accurate Twitter Accounts

Social Market Analytics aggregates the intentions of professional investors as expressed on Twitter.  We identify these professional investors using our proprietary twelve factor ranking system.  One factor is the forward accuracy of Twitter accounts.  If a Twitter account is Tweeting bullishly based on our patented NLP process and the security subsequently moves higher over specified periods that account is deemed to be accurate over that period.  Overall accuracy is aggregated across time for each account.  We have been tracking account accuracy out-of-sample for the past seven years. – it is impossible to recreate this data.  SMA is the only provider with out-of-sample account accuracy.  We found significant variability in account accuracy for supposed professional investors.  Social Market Analytics account scoring algorithms are extremely effective in excluding non-professional professionals.

SMA’s Accurate Account algos aggregate expectations from the most accurate Twitter accounts for individual securities for a specified time period: 1-Day, 2-Day, 1-Week, and 1-Month holding periods.   Definition of ‘Accurate’ – correctly identifying directional movement of the security’s price.  We do not include size of move – their sentiment is positive and the security moved higher.

We calculate consensus expectations of these accurate accounts on individual securities.  Accurate account universes differ across holding periods. Some accounts are more accurate in the short-term (Day trades), while others are more accurate for longer holding periods (up to one month).

Securities with significant consensus for both long and short are available through our API’s, Widgets and in Reports.  Below is a widget identifying securities with the most positive and negative consensus.   In this example, SMA’s accurate account universe is currently 100 bullish on MCO over the next 24 hrs.  Positive, negative and neutral are identified separately.

accurate accounts

To discuss getting access to these or any other SMA data feed or widget please contactus@socialMarketAnalytics.com

Thanks,

Joe

CBOE – Social Market Analytics SMLCW Index significantly outperforms.

Social Market Analytics aggregates the intentions of professional investors as expressed on Twitter.  SMA factors are highly predictive over various time frames.  In June of 2017 Social Market Analytics launched a weekly re-balanced large cap sentiment based index.  This index is comprised of twenty-five stocks with the highest average Twitter sentiment over the prior week selected and re-balanced Friday afternoons from the CBOE Large Cap 450 Index.  This index has been published daily since that date and is available on all major feeds.

Last year the SP500 Index had a return of -8.4%.  The CBOE SMLC Index had a return of +.87%.  Below is a comparative return chart over the last year compared to the SP500.

For more information or to license this index please contact us at ContactUs@SocialMarketAnalytics.com

smlcw performance

 

 

 

Cboe – SMA Large Cap Weekly Index continues to outperform in Volatile Market

Social Market Analytics, Inc. (SMA) partnered with the Cboe in January 2017 to release the SMLCW Index ‘Cboe – SMA Large Cap Weekly Index’. The SMLCW Index is a Long Only Index that has outperformed since it was released and has continues to outperform in the recent market volatility and sell-off. In the chart below the S&P500 is flat for the year and SMLCW is up nearly 5% YTD.

SMA has two U.S. Patents around its machine learning and NLP processes that produce predictive analytics at the security level across U.S. and UK stocks, ETFs, FX, Futures, and Crypto Currencies

The SMLCW portfolio is an equally-weighted Long Only portfolio of 25 stocks drawn from the CBOE Large-Cap Universe with the highest average 5-period S-Scores. Stocks in this universe (a) are in the top 15% capitalization tranche of stocks that are the underlying for options listed on the CBOE (approximately 3000 stocks) and (b) have a market capitalization greater than or equal to $10 billion.

SMLCW YTD

The CBOE Large-Cap Universe is reconstituted quarterly on the third Friday of the month. The SMLCW portfolio is reconstituted every Friday at 8:30 am CT, based on average 5-period SMA S-Scores at 8:10 am CT. A period is a date on which there is sufficient social media data to derive SMA S-Scores. Stocks are deemed sold and purchased at market-on-open prices. The portfolio is held until 8:30 am CT on the next Friday. If Friday is a business holiday, the portfolio is rebalanced on the preceding Thursday.

To learn more, visit SMA at www.socialmarketanalytics.com or the Cboe website at http://www.cboe.com/products/social-media-indexes

 

 

 

 

 

 

 

 

 

Introducing the Social Market Analytics (SMA) 50 Long Index

Social Market Analytics has been creating security level sentiment metrics for six years.  As we build an out-of-sample history we are able to build longer holding period indexes. I have blogged about longer term factors before, this is the most comprehensive portfolio strategy built using sentiment level data.  This blog will discuss the application of sentiment to a long only 50 stock, re balanced annually, index.

SMA50 Index is a new, capitalization weighted index comprised of 50 stocks with these features:

  1. The highest average unique message source counts, from SMA’s filtered Twitter data stream, observed over a 50-day look back interval, and
  2. High daily average dollar trading volume (ADV), > $20 Mil, over a 50-day look back interval.  We are looking for liquid stocks.

The SMA50 index measures the aggregate performance of stocks with high levels of crowd sourced commentary and high market liquidity.

  1. SMA50 is reconstituted each year on March 15th.  The core constituents are selected once a year.  They are re-weighted monthly based on the below tilt methodologies.
  2. SMA50 is the “Parent Index” for SMA50 Factor Tilt Products

Below is the historical performance of the SMA50 Index.  We will add tilting to the index based on sentiment and momentum.

SMA501

The following factor tilt indexes are derived from the equity universe of the SMA50 parent index.  Factor Tilt Indexes are re-balanced monthly on the first market day of the month.

SMA-MT: Momentum Tilt

– Designed to deliver the performance of an equity momentum strategy by emphasizing stocks with high risk-adjusted price momentum.

  • A momentum value is determined for each stock in the SMA50 parent index Universe by combining the stock’s recent 12-month and 6-month price performance. This is the standard implementation of a price momentum value.
  • This momentum value is then risk-adjusted to determine the stock’s Momentum Score.
  • All securities in the SMA50 Universe are weighted by the product of their Momentum Score and their market cap, as follow:

Momentum Weight for SMA-MT  = Momentum Score * Market Capitalization Weight in the SMA50.  Momentum weights are normalized to sum to 100%.

SMA50_MT

SMA-ST: Sentiment Tilt

– Using SMA’s S-Score and SV-Score as factors, emphasize stocks with positive levels of social media sentiment and intensity, while attenuating stocks with low sentiment levels.

  • A composite factor score is determined for each stock in the SMA50 parent index Universe from the linear combination of the stock’s monthly S-Score and monthly SV-Score.
  • This composite factor score is used to determine the stock’s Sentiment Score.
  • All securities in the SMA50 Universe are weighted by the product of their Sentiment Score and their market cap, as follow:

Sentiment Weight for SMA-ST  =  Sentiment Score * Market Capitalization Weight in the SMA-50.  Sentiment weights are normalized to sum to 100%.

SMA50_ST

SMA-SMT: Blended Tilt

–Define a factor which is a combination of sentiment and momentum tilts.

  • A combined factor is determined for each stock in the SMA50 parent index Universe from a linear combination of the stock’s Momentum and Sentiment scores.  Initial results for the blended tilt factor used an equal weighting of Momentum and Sentiment scores.
  • This combine factor score is then standardized and used to determine the stock’s Senti-Momentum Score.
  • All securities in the SMA50 Universe are weighted by the product of their Senti-Momentum Score and their market cap, as follow:

Senti-Momentum Weight for SMA-SMT  =  Senti-Momentum Score * Market Capitalization Weight in the SMA-50.  Senti-Momentum weights are normalized to sum to 100%.

SMA50_Combined

Comparative performance for all four theoretical portfolios is below.

SMA Relative Performance

Overlaying standard benchmark performance you can clearly see the effectiveness of the SMA 50 with various tilt strategies to outperform the benchmarks.

SMA Relative Performance bench

The SMA 50 family of indexes provide a low turnover way to benefit from exposure to social sentiment.  To learn more please contact us at ContactUs@SocialMarketAnalytics.com

Social Market Analytics Now Has Six Years of Out-Of-Sample History!

Social Market Analytics, Inc. (SMA) is celebrating six years of out-of-sample data in US Equities.   This data is unique in that it is a true representation of the Twitter conversation at each historical point-in-time.

Since our launch, SMA has become a leader in providing sentiment data feeds to the financial community.  Our data has become an integral part of our customers investment process.  Our customers are Quantitative Trading Firms, Hedge Funds, Sell Side Brokers, Traders and many others. SMA data is suitable for HFT, Quantitative Trading, Risk, Short Lending, Smart Beta, Fama-French Models, VAR among others.  Predictive signals range from a few minutes to quarterly.

SMA’s analytics generate high-signal data streams based on the intentions of market professionals.  Our patented machine learning process has produced six years of strongly predictive data as illustrated in the chart below.  This chart illustrates the subsequent performance of stocks based on pre-market open (9:10 am Eastern) sentiment scores.  Stocks with high sentiment subsequently out perform as illustrated by the Green line.  Stocks with strong negative sentiment go on to under perform as evidenced by the red line.  The blue line represents a theoretical equally weighted long short portfolio.  The table below illustrates Sharpe and Sortino ratios.

 

Fullhistory

Joe Gits talks Twitter at CBOE’s Risk Management Conference

Joe Gits, CEO of Social Market Analytics, recently spoke at the 34th annual CBOE Risk Management Conference.

Gits spoke at RMC about SMA’s patented technology, the Social Sentiment Engine, and Twitter’s relevance in financial markets.

Hosted by the Chicago Board Options Exchange, the RMC is an educational forum dedicated to exploring the latest products, trading strategies and tactics used to manage risk exposure and enhance yields. The RMC is the foremost financial industry conference designed for institutional users of equity derivatives and volatility products.