Social Market Analytics (SMA) Partners with Coin Metrics to provide Real-Time Sentiment Data Feeds

Coinmetrics

Coin Metrics and Social Market Analytics (SMA) announced today a partnership to incorporate SMA’s Crypto Currency Data Feed into the Coin Metrics Market Data Platform.

Alternative data such as social media platforms and data feeds have become a vital source of information for traders, particularly in the Crypto Currency Markets. The SMA Crypto Currency Sentiment Feed will offer the Crypto Currency community a tool for including social media sentiment data in their trading and portfolio strategies and expand Coin Metrics market leading Crypto Asset market and network data products.

“As the Crypto Investing market continues to mature, institutional investors are demanding data from trusted partners. These institutions are looking to make data-driven decision by accessing sources of data that they understand from their legacy investing frameworks. We believe that the power of combining sentiment data with granular network and market data is fundamental to building a deeper understanding of crypto assets. Coin Metrics is excited to partner with SMA, who has a long history of providing sentiment data to traditional capital markets participants and share Coin Metrics’ principles and values. The ability to provide an all-in-one Crypto Financial Data solution is a huge convenience for institutions.” Comments Tim Rice Co-Founder and CEO of Coin Metrics.

“Artificial intelligence and Natural Language Processing are moving into our everyday lives at light speed, and perhaps into financial markets even faster than that. We feel strongly at SMA that participants in Crypto Currency markets will benefit from our unique process in this emerging field, both in its approach to filtering social media data and in the analytical methodology used to develop our proprietary metrics. We’re excited to partner with the Coin Metrics team to offer this service through a versatile industry leading platform” said Joe Gits, Co-Founder and CEO of SMA.

About Coin Metrics

Coin Metrics was founded in 2017 as an open-source project to provide the public with actionable and transparent network data. Today, Coin Metrics delivers market and network data, analytics and research to its community and wider industry. https://coinmetrics.io/

About Social Market Analytics, Inc.
Social Market Analytics quantifies social media data for traders, portfolio managers, hedge funds and risk managers using patent pending technology to detect abnormally positive or negative changes in investor sentiment. SMA produces a family of quantitative metrics, called S-Factors™, designed to capture the signature of financial market sentiment. SMA applies these metrics to data captured from social media sources to estimate sentiment for indices, sectors, and individual securities. A time series of these measurements is produced daily and on intraday time scales. For more information, including a User Guide to S-Factors™, please visit www.socialmarketanalytics.com

CBOE – Social Market Analytics SMLCW Index significantly outperforms.

Social Market Analytics aggregates the intentions of professional investors as expressed on Twitter.  SMA factors are highly predictive over various time frames.  In June of 2017 Social Market Analytics launched a weekly re-balanced large cap sentiment based index.  This index is comprised of twenty-five stocks with the highest average Twitter sentiment over the prior week selected and re-balanced Friday afternoons from the CBOE Large Cap 450 Index.  This index has been published daily since that date and is available on all major feeds.

Last year the SP500 Index had a return of -8.4%.  The CBOE SMLC Index had a return of +.87%.  Below is a comparative return chart over the last year compared to the SP500.

For more information or to license this index please contact us at ContactUs@SocialMarketAnalytics.com

smlcw performance

 

 

 

Predictive Real-Time Alerting on Commodities

Social Market Analytics (SMA) tracks real-time sentiment on equities, commodities, currencies, ETF’s and crypto currencies.  SMA has the most powerful and customizable Alerting API combining Twitter sentiment and pricing metrics.  Users receive custom real-time sentiment alerts on instruments in their watch list.  For example, on December 11, 2018, SMA’s alerting system sent an alert on Corn at 12:12 pm CT when corn was @ $385.25. Below is the email and mobile alert.

Cornalert

Mobile

Subsequent to the alert, corn moved lower starting at 12:17pm CT. The price continued to move lower the remainder of the day and closed at $383.25. (See chart below)

Corn Alert

The above alert was based on SMA’s rolling 24-hour sentiment. SMA also calculates a Long-term sentiment with longer price projection periods.  Corn’s long-term S-Factor flipped from positive to negative on November 14th. 12/10 was the first day the long-term S-Factor for corn reached a significantly negative level of -1.5 standard deviations more negative than the longer-term baseline conversation. For more information please contactUs@SocialMarketAnalytics.com

Power of Predictive Alpha in a Bear Market

This year has been tough for most investment strategies.  Firms using traditional sources of data are generating the same underwhelming returns.  Two years ago, Social Market Analytics, Inc.  (SMA)  (Twitter)   launched the SMLCW index in partnership with the CBOE.  This index is re-balanced weekly and comprised of the twenty-five securities selected from the CBOE large cap universe with the highest average S-Score over the prior week.  It’s A long only index of super-cap stocks with unusually positive Twitter conversations.

SMA publishes a family of metrics providing a full representation of the Twitter conversation across equities (US and LSE), commodities, currencies, ETF’s & Cryptos.

S-Score is a normalized representation of the current Twitter conversation of professional investors as identified by Social Market Analytics patented algorithms.  SMA has access to the full Twitter feed through our licensed partnership with Twitter and listens in real-time for any mention of topics and securities of interest.  These Tweets are scanned in real-time for sentiment and influence of the poster and compared to prior conversations over the look back period.  Securities with higher S-Scores subsequently outperform and securities with negative S-Scores under-perform.

SMA S-Scores are predictive over multiple prediction periods.  With seven years of out-of-sample data we can extend our comparison baselines and predict over longer periods.

Year-To-Date the SMLCW index is up over 7.5% while the SP500 is flat.  Subtracting a couple percent for commissions/slippage and the index is still significantly positive. This is not a back-test, this index has been live and on your quote screens for nearly two years.  YTD actual performance chart from the CBOE site is below.

SMLCW - YTD

As mentioned, this is a long only index.  During the recent market drawdown this long index has been performing.  SMA negative S-Score stocks have been moving lower at a significant rate – generating positive alpha.  Below is a chart of the SMLCW index compared to the SP500.  for any questions or to learn more please contact us at:  ContactUs@SocialMarketAnalytics.com.

Thanks,

Joe

 

Bitcoin Sentiment Based Trading Strategy

Social Market Analytics (SMA) publishes real time Twitter based sentiment for nearly 300 crypto currencies including Bitcoin.  To view Bitcoin sentiment values and 35 other commodities in real time, go to the CME Active Traders website.   Twitter based sentiment has proven to be strongly predictive for Bitcoin and other commodities.

Today we will review a sentiment-based Z-Score strategy to generate profitable trades for Bitcoin.  This is similar to traditional standard deviation band strategies calculated with price.

When Twitter volume from certified investors is abnormally high use the sentiment of the abnormally large conversation to select entry points.  Strategy overview is below:

CMEBitcoin 1

A visualization of the strategy is below. When the Z-Score of Social Market Analytics Indicative Twitter volume is greater than the threshold and the tone of the conversation is significant enter or modify trades.  Sentiment  > 2 standard deviations and the volume of the conversation is high enter a position.  Positions are modified based on further extensions of the Z-Score.

CMEBitcoin2

Test period is from 1/1/2017 to current.  Overall results below.  For more detailed results on this and other strategies contact ContactUS@SocialMarketAnalytics.com

CMEBitcoin3

SMA has examples of profitable applications of Twitter based sentiment to many coins.

Extreme Positive Gold Sentiment on CME Active Trader Website.

Social Market Analytics (SMA) data is live on the CME Active Trader Website.  Real-time sentiment and indicative Twitter volume is used by traders to generate new ideas.  Sentiment data is predictive across various time frames.  High sentiment commodities go on to outperform and negative sentiment commodities underperform.  SMA covers 36 commodities on the CME website for: Agricultural, Equity Indexes, Energy, Metals, Interest Rates & FX.

On Monday 9/24 Gold Sentiment crossed through extreme positive at 7:30 am central time.    https://activetrader.cmegroup.com/Products/Metals

GoldBlog1

Clicking on the chart expands the time frame for further analysis.

GoldBlog2

To learn more about Social Market analytics commodity sentiment data or more about the CME implementation: ContactUs@SocialMarketAnaltics.com.

To receive alerts like this in real time follow us on Twitter at @sma_alpha.

UIUC Bitcoin Trading System Practicum Presentation

Every year Social Market Analytics (SMA) is proud to work with the University of Illinois Masters of Science in Financial Engineering Students on a practicum project. In the past we have explored looking at sentiment to predict the VIX, enhancements to traditional indexes and smart beta ETF’s. This year we decided to tackle the most popular topic of the last year – Bitcoin Trading!   We worked with RCM Capital’s Strategy Studio Platform for back testing to develop a Bitcoin trading strategy combining price momentum with sentiment to keep you in the market when Bitcoin is trading up and minimizing draw downs when Bitcoin retreats as it did in early 2018.

Social Market Analytics tracks sentiment on the top 275 market cap currencies, the below Bitcoin strategy performs similarly on other Crypto currencies.

The students did a wonderful job in strategy construction and explanation.  I will undoubtedly leave something important out.  ContactUs@SocialMarketAnalytics.com for details.

At it’s core the strategy buys on a price breakout with a sentiment confirmation.  Exit when price breaks down and is confirmed with sentiment.  Buy when the price crosses above (K) standard deviations over a 21 day moving average of price.  Variable K ranged from .5 to 2. Results shown use a .5 standard deviation multiplier.  Strategy visualization is below.

BitcoinStrategyVisual

Your first trigger is a breakout above K- Standard deviations of the 21 day moving average.

The confirming signal is based on the Social Market analytics S-Score value.  S-Score is a normalized representation of Bitcoin’s Sentiment time series over a look back period and is updated every minute.  It measures the tone of the conversation on Twitter relative to the benchmark time period.  If Bitcoin is breaking out and the sentiment is 2 standard deviations more positive than normal you initiate or add to your position by 50%.  If the conversation is 1 standard deviation more positive than normal  increase the position 25%.  If the standard deviation price break out is not confirmed by sentiment then no position change.

There was no short position initiated with futures.  Exit criteria are opposite entry criteria.  Price break below K – Standard deviations below a moving average. Confirmation with S-Score.

BitcoinResults

Dollar P/L results indicated this portfolio successfully navigates the the bitcoin draw down of early 2018.   2018 in isolation is below.

Bitcoin-2018

Overall performance with Buy & Hold Bitcoin comparison.

BitcoinStats.png

Sharpe ratio and draw down improve dramatically with the momentum and sentiment confirmation.

stats2

Again, please ContactUs@SocialMarketAnalytics.com for more information on our offerings.

Thanks again to the University of Illinois MSFE students and RCM  Capital Markets for contributing to this project.

Regards,

Joe